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I. Introduct ion  

Under the small scale yielding assumption, 

many researchers customarily disregarded the 

higher order singularities in the complete Wi- 

lliams eigenfunction expansion. More often than 

not, only the stress intensities of the inverse 

square singularity and T-stress are employed to 

represent the displacement and stress field near 

the crack tip for examining the initiation of crack 

growth. However, Hui and Ruina (1995) con- 

tended that if there exists a plastic zone around 

the crack tip, the complete solution in elastically 

deformed material outside the plastic zone should 

include the higher order singular terms. There is 

another work along this line. Chen and Hasebe 

(1997) investigated the explicit formulations of 

the ] - in tegral  in terms of the coefficients of the 

complete Williams expansion form for a semi- 

infinite crack with a plastic zone around the crack 
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tip. They used the technique based on the so- 

called pseudo orthogonality property of the com- 

plete Williams expansion (Chen and Hasebe, 

1994a, b). More practically the ] - in tegra l  is em- 

ployed together with crack-tip opening displace- 

ment to estimate crack deriving force for mis- 

matched joints with interfacial cracks (Kim and 

Lee, 2000). 

The two-state conservation integrals stem from 

the conservation laws for two equilibrium states 

and they were proposed by Eshelby (1956) and 

later by Chen and Shield (1997). Among these 

two-state conservation laws, the two-state L- in -  

tegral has been employed by Choi and Earmme 

(1992) in relation to computing the stress inten- 

sities tbr circular arc-shaped cracks, and the ap- 

plication of the two-state M-integral  has been 

examined by Im and Kim (2000). The two-state 

] - in tegral  has been widely used for obtaining 

stress intensities and elastic T-stress. Kfouri 

(1986), Matos et al. (1989), Cho et al. (1994) 

and Jeon et al. (1996) used this two-state I -  

integral successfully to compute the stress intensi- 

ty factors. For analyzing elastic-plastic cracks, 

Jeon and lm (2001) applied the two-state J -  

integral and the two-state M-integral as well. 
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tip. They used the technique based on the so­

called pseudo orthogonality property of the com­

plete Williams expansion (Chen and Hasebe,

1994a, b). More practically the J-integral is em­

ployed together with crack-tip opening displace­

ment to estimate crack deriving force for mis­

matched joints with interfacial cracks (Kim and

Lee, 2000).

The two-state conservation integrals stem from

the conservation laws for two equilibrium states

and they were proposed by Eshelby (1956) and

later by Chen and Shield (1997). Among these

two-state conservation laws, the two-state L-in­

tegral has been employed by Choi and Earmme

(1992) in relation to computing the stress inten­

sities for circular arc-shaped cracks, and the ap­

plication of the two-state M-integral has been

examined by 1m and Kim (2000). The two-state

J -integral has been widely used for obtaining

stress intensities and elastic T -stress. Kfouri

(1986), Matos et al. (1989), Cho et al. (1994)

and Jeon et al. (1996) used this two-state J­
integral successfully to compute the stress intensi­

ty factors. For analyzing elastic-plastic cracks,

Jeon and 1m (2001) applied the two-state J­
integral and the two-state M-integral as well.
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Furthermore, Jeon and lm (2001) investigated the 

role of the higher order singularities in elastic- 

plastic crack problems under Mode I. They show- 

ed that the ] - in tegral  and the M-integral com- 

prise only the contributions from the mutual in- 

teraction between all complementary pairs of the 

eigenfields, and found that the higher order sing- 

ularities interact with the nonsingular higher or- 

der eigenfields to generate the extra configura- 

tional force, in addition to the energetic force 

resulting from the inverse square root singularity. 

This additional ] -va lue  is associated with the 

translation of the plastic zone alone, with the 

crack tip being fixed. 

In this paper, we utilize the two-state J - in te-  

gral and the two-state M-integral  for analyzing 

the elastic-plastic crack under Mode I1 deforma- 

tion. Following Jeon and lm (2001), we first sum- 

marize the two-state conservation law and the 

complete Williams eigenfunction expansion. Next 

we consider SENT (the single edged notch ten- 

sion) panel to examine its complete eigenfunction 

expansion and to discuss the significance of the 

higher order singularities for Mode II cracks. Nu- 

merical examples are presented for illustrating the 

correlation between the higher order eigenfields 

and the configurations of plastic zone. 

2. Governing Equation and the T w o -  
State  Conservat ion Integral  

Consider a cracked specimen as shown in Figs. 

1 and 2. We restrict our attention to the plane 

strain problem and the origin of the coordinate is 

located in the crack tip (see Fig. 2). We assume 

that the material properties of the body are iso- 

tropic, and that some in-planar loading is applied 

on the far-field boundary. Then in the absence of 

body forces the equilibrium equation is written as 

crap,a=O (a, /~=I ,  2) 

where the comma indicates the partial differentia- 

tion with respect to the Cartesian coordinate xi. 

Near the crack tip, plastic deformation will 

occur when the loading on the far-field boun- 

dary increases. For the plastic zone, we select the 

Prandtl-Reuss equations tbr incremental plasti- 
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Fig. 2 The SENT panel tor plane strain deformation 

city theory of isotropic-hardening materials (Mc- 

Meeking, 1977). The constitutive law is 

for plastic loading and 

r/*-- I+uE [ D , . + ~ D . k ~ u ] _ .  (lb) 

for elastic loading or unloading, where u is Pois- 

son's ratio ; r is the Kirchhoff stress defined by 

z-=/o. 

where f is the ratio of volume in the current state 

to volume in the reference state; 0" is the true 

stress tensor ; D is the rate of deformation tensor 

defined as the symmetric part of the spatial ve- 

locity gradient; ¢3u is the Kronecker delta. Fur- 

thermore, let the stress deviator ¢r'~ and the tensile 
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Furthermore, Jeon and 1m (2001) investigated the

role of the higher order singularities in elastic­

plastic crack problems under Mode l. They show­

ed that the J -integral and the M-integral com­

prise only the contributions from the mutual in­

teraction between all complementary pairs of the

eigenfields, and found that the higher order sing­

ularities interact with the nonsingular higher or­

der eigenfields to generate the extra configura­

tional force, in addition to the energetic force

resulting from the inverse square root singularity.

This additional J-value is associated with the

translation of the plastic zone alone, with the

crack tip being fixed.

In this paper, we utilize the two-state J -inte­

gral and the two-state M -integral for analyzing

the elastic-plastic crack under Mode II deforma­

tion. Following Jeon and 1m (2001), we first sum­

marize the two-state conservation law and the

complete Williams eigenfunction expansion. Next

we consider SENT (the single edged notch ten­

sion) panel to examine its complete eigenfunction

expansion and to discuss the significance of the

higher order singularities for Mode II cracks. Nu­

merical examples are presented for illustrating the

correlation between the higher order eigenfields

and the configurations of plastic zone.

2. Governing Equation and the Two­
State Conservation Integral

Consider a cracked specimen as shown in Figs.

and 2. We restrict our attention to the plane

strain problem and the origin of the coordinate is

located in the crack tip (see Fig. 2). We assume

that the material properties of the body are iso­

tropic, and that some in-planar loading is applied

on the far-field boundary. Then in the absence of

body forces the equilibrium equation is written as

l1afl.a=O (a, {3=I, 2)

where the comma indicates the partial ditferentia­

tion with respect to the Cartesian coordinate Xi.

Near the crack tip, plastic deformation will

occur when the loading on the far-field boun­

dary increases. For the plastic zone, we select the

Prandtl- Reuss equations for incremental plasti-

city theory of isotropic-hardening materials (Mc­

Meeking. 1977). The constitutive law is

for plastic loading and

[ij = I~ II [Du+ I ~211 DkkOij ] (I b)

for elastic loading or unloading, where II is Pois­

son's ratio; [is the Kirchhoff stress detined by

[=111

where 1 is the ratio of volume in the current state

to volume in the reference state; 11 is the true

stress tensor; D is the rate of deformation tensor

defined as the symmetric part of the spatial ve­

locity gradient; Ou is the Kronecker delta. Fur­

thermore, let the stress deviator l1;j and the tensile
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equivalent stress ~ be defined as X~ 

, 1 ~ 3 
a ~ = a ~ -  3 ~a~,,  ~ : ~ a i ~ j  (2) 

Note that h is the slope of the uniaxial Kirch- 

hoff stress versus logarithmic plastic strain curve, 

which is obtained from a given uniaxial har- 

dening rule. and that the superscript '*' dencrtes 

the Jaumann or the co rotational stress-rate. 

For the elastic region outside the plastic zone, 

we assume an infinitesimal deformation behavior 

to which the classical linear theory of elasticity is 

applicable. Then we have the following consti- 

tutive equations 

~ff ij ~ C ijkm~ kra, 

Cijkm = / l ~ i k ~ j m  "~ ]J~im~yk Jr- 2 V]. l~i j~km/ ( l - -  2 v) ( 
3a) 

with e ~ # :  (ua.#+U#.a)/2, 
(3b) 

(0t, f l = l .  2) and e3a=0 

where /J and u are shear modulus and Poisson's 

ratio, respectively. 

For the plane problem, the J- integral  (Eshel- 

by, 1956; Rice, 1968) and M-integral (Knowles 

and Sternberg, 1972) may be written as: 

J : f F (  W n l -  {illi,1) d s  (4a) 

M =  fr  ( W n , -  t ,u, , , )  x,ds (4b) 

where nt is the component of unit outward nor- 

mal on the contour /~ (see Fig. 3); W and t~ 

indicate the strain energy density and the traction 

component, given as W=Cuk~eue~/2 and ti= 
o'onj. Furthermore the two-state J integral and 

the two-state M-integral j(a.s) and M <A's) (see 

Eshelby, 1956; Chen and Shield, 1977: lm and 

Kim, 2000; Jeon and Im. 2001) are given as 

Crack surf ace 

V 

F- 

I" I 

¢ 

[ 
XI 

A-At 

Fig. 3 The integral path for J-integral. M-integral 
and two-state conservation integrals 

]¢A'B~=J(A, B) + J ( B ,  A) (6a) 

M(A'a)=M(A, B ) + M ( B ,  A) (6b) 

where j(A,B) and ](,a.s~ are given as 

/"[ l A B ) ] (A, B)=Jr~2ak,,ek~n~--tau,B,~ ds (7a) 

H 1 ~ - tmu~n, )x,ds (7b) 

then we see that J (A, B) :#] (B, A) and M (A. 
B) :4:M(B, A) from the Eq. (7a, b). 

The two-state conservation integrals ./~a.s) and 

M ~A'B) are associated with the J -  and the M -  

integral, respectively. They indicate the conserva- 

tion integrals resulting from the mutual interac- 

tion between the two elastic states "A" and "B". 

The domain integral representation of ]CA.B) and 

M <A's) (Li et al., 1985; lm and Kim, 2000) are 

given as 

(A,B)__ f B B A ] - [(~u~l+a,~uu)q~-~,q.1]dA (8a) .&- A~ 

M~A'n'- [ [ l',~u~,+a,Su~t)x,qa-4,d,x,q.~]dA (88) 
--jA_AI 

j~A,B~_fr  C ~ E  s n : t au  B + t  B 4 - j r L  i~ .  ,~ .= 1 - ~ ,  ~1 i,i.l,]ds (5a) 

MIA'8)=fr[ C , ~ : ~ . n , -  ( t:u,8,, + t~ ua,) ]x,ds (5b) 

3. The Application of  the T w o - S t a t e  
Conservation Integral to Mode II 

E las t i c -P las t i c  Cracks 

where the superscripts "'A'" and "B'" indicate two 

independent elastic states "A" and "B" for the 

plane problem. For convenience, we rewrite j-<A.m 

and M (a'm as 

Consider a mode 1I crack under elastic-plastic 

deformation around the crack tip. We take the 

origin of the coordinate system at the crack tip 

(see Fig. 2). Let R ~ 0  denote the maximum 

Copyright (C) 2003 NuriMedia Co., Ltd. 

256 Insli leon, Yongwoo Lee and Seyoung 1m

Fig.3 The integral path for I-integral, M-integral

and two-state conservation integrals

equivalent stress (j be defined as

Note that h is the slope of the uniaxial Kirch­

hofT stress versus logarithmic plastic strain curve,

which is obtained from a given uniaxial har­

dening rule, and that the superscript .•• denates

the Jaumann or the co-rotational stress-rate.

For the elastic region outside the plastic zone,

we assume an infinitesimal deformation behavior

to which the classical linear theory of elasticity is

applicable. Then we have the following consti­

tutive equations

Crack surf ace

-'
r
~

- ~- - ~

r
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(3b)

(Jij= CijkmCkm, (3a)
Ctjkm= /-d3jJ,()jm+ f-lOtmOjk+ 2Vf-lOijOkm/ (1- 2v)

with cap=(Ua,p+up,a)/2,

(a, (3= L 2) and c3a =0

]lA.B)=I(A B) +I(B, A)

M(A,B)=M(A B) +M(B, A)

where j<A,B) and ]lA,B) are given as

(6a)

(6b)

where f-l and v are shear modulus and Poisson's

ratio, respectively.

For the plane problem, the I-integral (Eshel­

by, 1956; Rice. 1968) and M-integral (Knowles

and Sternberg. 1972) may be written as :

I = 1.(WtlJ - liU~l) ds (4a)

M=1.( W1'lI-liUi.lhlds (4b)

where I'll is the component of unit outward nor­

mal on the contour r (see Fig. 3); Wand Ii
indicate the strain energy density and the traction

component, given as W = CijkmCijCkm/2 and li=

(Jijnj. Furthermore the two-state I -integral and
the two-state M-integral j<A,B) and M(A,B) (see

Eshelby, 1956; Chen and Shield, 1977; 1m and

Kim, 2000; Jeon and 1m, 2001) are given as

j!A.BI=DCiikmE'1jdmnl-Wufl+tfuttlJds (5a)

WA,B)=DC,ikmE'1j ci.nl- ((tufl +tfutd JXlds (5b)

where the superscripts" A" and "8" indicate two

independent elastic states "A" and "8" for the

plane problem. For convenience, we rewrite j<A.B)
and M(A,B) as

I(A B) =1.( ~ dmcZm1'll-ttU?1 )ds (7a)

M(A B) = 1.(+dmcfm1'lI-ltU?'1 )x1ds (7b)

then we see that I (A. B) =1=I (B, A) and M (A.
B) =l=M(B, A) from the Eq. (7a, b).

The two-state conservation integrals ]lA.B) and

M(A,B) are associated with the I-and the M­

integral, respectively. They indicate the conserva­

tion integrals resulting from the mutual interac­

tion between the two elastic states "A" and "8".

The domain integral representation of ]lA.B) and

M(A,B) (Li et al., 1985; 1m and Kim, 2000) are

given as

3. The Application of the Two-State
Conservation Integral to Mode II

Elastic-Plastic Cracks

Consider a mode II crack under elastic-plastic

deformation around the crack tip. We take the

origin of the coordinate system at the crack tip

(see Fig. 2). Let R=I=O denote the maximum
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radius of the plastic zone, i.e., the length of the 
maximum radial distance from the crack tip to the 
elastic-plastic boundary. The stress and displace- 
ment field for the Mode II deformation may be 
obtained using the stress potential of Timoshenko 
and Goodier (1987). The complete Williams ei- 
genfunction expansion of the Laurent series type 
for mode II crack in the presence of the plastic 
zone (Dickerson and Kim, 1988) are given as : 

6 u - - ~ {  n~.~"[(2-C~(~+2))(Sn+l)sin ~n0 (9a) 

-a.(~.+ t)sm(~.-2) 0]} 

K 
a = = ~ {  n~®/~.~"[(2+C.(8.+2))(dn+l)sin 8.0 (98) 

+&(&+ l)sin(&-2) 01} 

~,,=~{.~o#.e.[(-)c.(~.+~) (~.+2)co~ ~.0 (9c) 
-an(a.-- i )  cos(&-2)0] }  

(/aa= V (Oll + fizz), O'la= ff2a-=0 (9d) 

u~= ~z 2~-~ { .~  /~.~"+~[(x-C.(&+2))sin(&+l)0 (9e) 

- (~.+l)sin(a.- 1) 0]} 

(9f) 
-(a.+~)c0s(a.-~) 0]} 

^ r 
where r = ~ - >  1 and the eigenvalues an are given 

as A, a - z = - - 3 / 2 ,  a - t : - - l ,  a o : - - l / 2 ,  a~ :0 ,  
~z = 1/2, A (see Table 2 or 3); Cn is the function 
of an, written as 

C, ,= ( - )  [sin a n x / s i n ( a n + 2 )  ,rr] 
(annA, - 1/2. 1/2. A) 

Cn= ( - )  [an cos &x /  (& + 2)cos(an+ z) x] 
(an=A, -1 ,  0, I, A) 

The stress coefficient /~n is related to the ei- 
genvalue an. Note that rio, which is set to ' I '  for 
convenience, is the coefficient of  the eigenvalue 
& = - -  1/2 for Mode II and that KHflo=KH is the 
stress intensity factor. 

For crack problems under Mode II, wherein 
j(A,m and M u~'s> retain the path independence, we 
define the complementary pairs of eigenvalues an 
and an c following Im and Kim (2000) and Jeo 
n and Im (2001) as follows: 

a n + a c = - - I  : in the J-integral sense (10a) 

a , + a n C = - - 2 :  in the M-integral  sense (10b) 

For an arbitrary eigenvalue an, we have the com- 
plementary eigenvalue a c = -  1 -  an in the ] - i n -  
tegral sense and a ~ = - 2 - a n  in the M-integral 
sense, respectively. Furthermore for cracks, we 

an--  --  1 --  may verify that both of c _  an and a c =  
- -2 - -an  are also eigenvalues whenever an is an 
eigenvalue. 

Consider an eigenfield corresponding to an 
arbitrary eigenvalue an c. We define this field to be 
an auxiliary elastic state, which is to be utilized 
for the state "B" in the two-state integrals (5a, b). 
It may be obtained by taking only the eigen- 
function term corresponding to the eigenvalue ag 
in the expressions (9a-f): 

a i m -  K;~ u w n / - ~  B,~d[(2-CnC(&%2))(dc + l)sin &cO 
(i la) 

-&c(a~+ 1)sin(~-2)0] 

a = ( & ~ ) - ~ -  KI5 B~ai[(Z+Cg(&%2))(&%l)sin &~0 (11b) 

+ &~(~+ l)sin(&~-2)0] 

~,2(~) = Kh #c~dr/_)Ci(&%l)(&%2)c0s &~0 (l lc) ~ / ~ -  t a?~/ L', 

-$.~ (&% 1)c0s (&~-2)0] 

aa(d~) = v (a,,(ag)+ a.(g{c)), 613(&c) = 6~(~) =0 ( l id)  

_ K;~ f R  # ¢ ~ g + l r  
u 1 ( a c ) - 2 ~ " n "  L(x-CC(~C+2))sin(dC+l)O ( l ie)  

- (&% l)sin(~i- ,) 0] 

/(C f f ~ -  C c 
Uz(8 c) = ~ / ~ n c  ~"+t[ (-) (X+ Cg (~.c +2))c0s (~c + 1)0 

(1 If) zlt4zx 
-(~.% I)c0s (~i-1)0] 

where fig is the stress coefficient for the com- 
plementary eigenfunction and Kh is the stress 
intensity factor of the complementary eigenfield 
when fo  c being defined to be 1. Here C g is the 
function of a g, written as 

C ~ =  ( - )  [sin anc/r/sin(anC +2)  7r] 
(Sg=A,  - 1/2, 1/2, A) 

C c = ( - )  [&~ cos &~zr/(a~ +2) cos (&~ +2) ~r] 
(&~,=A, -1 ,  o, l, A) 

We now consider the superposition of this 
auxiliary elastic state onto the given elastic state 
outside the plastic zone for an elastic-plastic 
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(9f)

radius of the plastic zone, i.e., the length of the

maximum radial distance from the crack tip to the

elastic-plastic boundary. The stress and displace­

ment field for the Mode II deformation may be

obtained using the stress potential of Timoshenko

and Goodier (1987). The complete Williams ei­

genfunction expansion of the Laurent series type

for mode II crack in the presence of the plastic

zone (Dickerson and Kim, 1988) are given as:

au= !!!k (ntPnyl'[(2-Cn(On+2)) (On+I)sin on8 (9a)

-On(On+ I)sin(on-2) 8J}

0'22= !!!k (n~}nYI·[(2tCn(on+2))(On+I)Sin on8 (9b)

tOn (On+ I)sin(On-2) 8J}

0'12= !!!k (n~}nyl'[ (-) Cn(On+ I) (On+ 2)COS On8 (9c)

-On(On+ I)coS(On-2) 8J}

(9d)

Ul= K21I~2R ( ~ Pnyl·+l[(K-Cn(On+2))sin(oal) 8 (9 )
fJ.~ lIT n;-m e

- (On+ l)sin(On- l) 8J}

U2= ~~Z (ntPnf I
•
t1

[( -) (K-C.(0.+2))cos(On+l) 8

- (0.+ I) Cos(O.-1) 8J}

where r= ~ > I and the eigenvalues On are given

as A, 0-2=-3/2, 0-1=-1, 00=-1/2, 01=0,
02= 1/2, A (see Table 2 or 3); Cn is the function

of On, written as

Cn= (-) [sin oniT/sin(on+2) iT]
(on=.1, -1/2, 1/2, A)

Cn= (-) [On cos OniT/(On+2) COS (On+2) iT]
(On=A, -1,0, I, A)

The stress coefficient /3n is related to the ei­

genvalue On. Note that /30, which is set to 'I' for

convenience, is the coefficient of the eigenvalue

00= -1/2 for Mode II and that KlI /3o= KlI is the
stress intensity factor.

For crack problems under Mode II, wherein
PA,B) and M(A,B) retain the path independence, we

define the complementary pairs of eigenvalues On
and o~ following 1m and Kim (2000) and leo
n and 1m (2001) as follows:

On +o~ = - 1 : in the J - integral sense ( lOa)

On+0~=-2: in the M-integral sense (lOb)

For an arbitrary eigenvalue On, we have the com­

plementary eigenvalue o~ = - I - On in the J-in­

tegral sense and o~ = - 2- On in the M -integral

sense, respectively. Furthermore for cracks, we

may verify that both of o~ = - I - On and o~ =

- 2- On are also eigenvalues whenever On is an

eigenvalue.

Consider an eigenfield corresponding to an

arbitrary eigenvalue o~. We define this field to be

an auxiliary elastic state, which is to be utilized

for the state "B" in the two-state integrals (Sa, b).

It may be obtained by taking only the eigen­

function term corresponding to the eigenvalue o~

in the expressions (9a-f):

au(o~)=~ eW;[ (2-C~(oa2)) (o~+ I) sin 0~8 (lIa)

-o~(oaJ)sin(0~-2)8J

a22(o~) =~ eW;[ (2tC~(0~+2)) (o~+ J)sin 0~8 (II b)

tO~(oal)sin(0~-2) 8J

aI2(0~) =~ eW;[( -) C~(oal) (oa2) cos 0~8 (lIe)

-o~ (o~+ J) COS (0~-2) 8J

0'33 (o~) = II (au (o~) +a22(o~)), alM~) =a23(o~) =0 (lId)

Ul(O~) = ~:;iI eW;+l[ (K-C~(oa2) )sin(oa I) 8 (I Ie)

- (o~+ J) sin(o~ -I) 8J

uz(O~) =~~Z PW;+1[( -) (K+C~(oa2))cos(0;+I) 8 (llf)

- (0;+ I) cos (o~ -I) 8J

where /3~ is the stress coefficient for the com­

plementary eigenfunction and KfI is the stress

intensity factor of the complementary eigenfield

when /3g being defined to be I. Here C~ is the

function of o~, written as

C~= (-) [sin O~iT/sin(0~+2) iT]
(0~=A, -1/2, 1/2, A)

C~= (-) [o~ cos O~iT/ (o~ +2) cos (o~ +2) iT]
(0~=A, -1,0, I, A)

We now consider the superposition of this

auxiliary elastic state onto the given elastic state

outside the plastic zone for an elastic-plastic
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crack problem under consideration. For  the elas- 

tic state "A" we substitute the elastic field (9a-f),  

which has been obtained by replacing the plastic 

zone by the elastic singularities, and the auxiliary 

field ( l l a - f )  for the elastic state "B". We reach 

the following expression for j(A,m and M ~a'B) of 

Eq. (5a, b) after some algebra : 

j(a,n)~__ ~,, j(**,,~,) and M 'A'B)-- ~,, M (s~'s~' 
k = - - ~  k=--oo 

where 

j(~,:.)_ [ 'KIEf  # j # ~ + e . % l F ( ~ k  ' ~ ,  0) dO 
- - J r  2;,rR i., i-, 

--Jr  2zrR ~..m~,.. ._. ~vm, ~c, O) dO 

a n d / ' i s  a circuit enclosing the plastic zone. Note 

that F ( ~ a ,  ~g. 0) and G(~m, ~.~, 0) are functions 

which are independent of the " r " -coord ina te .  

They depend only upon the eigenvalues and "0"  

-coordinate.  We exploit the path-independence 

characteristics o f ]  (s~'sg> and M(~m "~'~) to show that 

the contributions of all 3~ and 8m to the two-state 

conservation integrals vanish identically except 
for 3 ~ = - - 1 - - ~ c = ~  in ](~'~"¢) and ~ m = - - 2  

--c~.~=~. in M (e"'eg>. That is, we take P to go to 

infinity for ~ + ~ g < - - I  in J(~'~"~) and for c~,~ 

+ c ~ g < - - 2  in M (~"'eg> while we take P to be 

arbitrarily small for each of c ~ k + ~ . ~ - - I  and 
~m+~C-->--2 (see Im and Kim, 2000). Hence we 

have 

] (~*"#=0 or frF(3~,  ~,~, O) dO--O 
(12a) 

unless an = --  1 --  C~n c 

M(*~"sl )=0 or frG((3m, ~,~, O) dO=O 
(lZb) 

unless ~m = - 2 -  ~g 

Hence the mutual interaction integrals or the 

two-state integrals J(~;'~) and M (~'s~) vanish un- 

less the two eigenvalues are complementary to 

each other. It Ibllows from this that 

j(a,u)_ j(~.,.~,) 

M(A,~)=M(~.,g) 

Now we calculate these two-state integrals with 

the aid of Eqs. (5a, b), (9a-f) and ( l l a - f ) ,  fin- 

ally to reach 

IA .> K . K h  c J ' =(-)~(tc+l)~.fl.[C.(8.+l)(8.+2)(8.c+l) 

+Cg(SnC+l) (~g+2)(8,+1)+(Sn+l)(8c+i)] (13a) 

(for n =-o% A, - I, 0, I, A, co) 

M(a'n)=(-)K'~KhR(K+I)~.BI[C.(a,+I) (8,+2)(8.% 1) 

+ C,C (~,c + 1)(8c +2)(8,+1)] (13b) 

(for n =-c% A, -1, 0, I, A, 00) 

Take K~ tic = 1 for convenience to compute ]ca, s) 
and M (a'n) in (13a, b). We compute the left hand 

side ofEq.  (13a, b) by applying Eq. (8a, b) to the 

two states: one is the elastic state outside the 

plastic zone under consideration and the other is 

the auxiliary state or the eigenstate of the eigen- 

value ~n c with KhflnC=l. We then see that Eq. 

(13a) or (13b) provides a linear equation in KH 

fin for each eigenvalue 8n. The accurate com- 
putation of  the two-state conservation integrals 

j(a,B) and M (a'B) is possible just via a regular 

displacement based FEM in conjunction with the 

domain integral representations (8a, b). In the 

present study, we rely upon ABAQUS for com- 

puting this finite element solution. Then the Eq. 

(13a) or (13b) yields Kufl .  for each C~n, that is, 

the stress intensity factor and the higher order 

stress coefficients. 

According to Eq. (7a, b), ] ( A ,  B) and M(A,  
B) for the mode II are given as 

](& ~,)=(- ~2,~[2C,~(8,+1) 8,+2/(g+l 

+2C,C(8~+ l ) ~  (~+2)(8,+1)+ (x+l)(8,+1)(8,C+l)i (14a) 

(n=-o~, A, -1, 0, I, A, m) 

m(d,, ~[)= ( - ) ~  R/~,/~,~[C.K(8.+I) (8,+2) (8,% 1) 

+ C~(8~+ 1)(8~ +2)(8,+1)t (14b) 

(n=-00, A,-1,0, 1, A, o0) 

As discussed before, J (A,  B) and M ( A ,  B) do 

not satisfy the path-independence property in 

general, but J (A,  B) becomes path-independent  

i f " A "  and "B" represent two eigenstates that are 

complimentary to each other in the ] - in t eg ra l  

sense (see Jeon and Im, 2001). The same applies 
to M ( A ,  B) .  and so we have the path-indepen- 

dent expressions (14a. b). 
Let jcs.,s~,) and M Ce'~'~ indicate the mutual 

interaction for two eigenfields of eigenvalues ~ 
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where

jlA,B)= ~ jl8.,8~) and M(A,B)= ~ M(8.,8~)
k=-oo k=-~

jlA,B)=jl8n,8~)

M(A,B)=M(8n,8~)

Now we calculate these two-state integrals with
the aid of Eqs. (Sa, b), (9a-f) and (L Ia-f), fin­

ally to reach

Take Kfr /3~ = I for convenience to compute jlA,B)

and M(A,B) in (l3a, b). We compute the left hand

side ofEq. (L3a, b) by applying Eq. (8a, b) to the

two states: one is the elastic state outside the

plastic zone under consideration and the other is

the auxiliary state or the eigenstate of the eigen­

value (J~ with KI~ /3~ = I. We then see that Eq.

(13a) or (l3b) provides a linear equation in KII

/3n for each eigenvalue (In. The accurate com­

putation of the two-state conservation integrals
jlA,B) and M(A,B) is possible just via a regular

displacement based FEM in conjunction with the

domain integral representations (8a, b). In the

present study, we rely upon ABAQUS for com­

puting this finite element solution. Then the Eq.

(13a) or (13b) yields KIl /3n for each (In, that is,

the stress intensity factor and the higher order

stress coefficients.
According to Eq. (7a, b), J (A, B) and M (A,

B) for the mode II are given as

J(On, 8;)=(-) K~~I~ finfi;[2CnKlo'+l) 10,+2) (8;+1)

+2C~ 10;+ I) 18;+2) 10n+ l) +IKt I) (On+ I) lo~+ I)] (14a)

(n=-co, A, -1,0, I, A, co)

M(on, o~) = (-) KI~~I~ Rfinfi~[CnK(On+ I) (On+ 2)(oa II

+c~(oa I) (oa2)(on+J) ] (14b)

(n=-oo, A. -I. 0, I, A. (0)

As discussed before, J (A, B) and M (A, B) do

not satisfy the path-independence property in
general, but J (A, B) becomes path-independent

if "A" and "B" represent two eigenstates that are

complimentary to each other in the J -integral

sense (see Jeon and 1m, 2001). The same applies
to M (A, B), and so we have the path-indepen­

dent expressions (14a, b).
Let jl8n,8~) and M(8n,8~) indicate the mutual

interaction for two eigenfields of eigenvalues (]n

jlA,B)=(-) KI~~I~ (K+l)finfi~[Cn(on+1) IOn+2) (0~+1)

+C~ (o~ +I) (oa2) (On+ I) + (On+ I) (o~+ II ] (13a)

(for n=-oo, A. -1,0, I, A, (0)

M,A,B)=(-) K~~fI R(K+ I) finfi~[ Cn(On+ l)(8n+2)(0~+ 1)

+C~(0~+1)(0~+2)(on+I)J (13b)

(for n=-oo, A. -1,0, I, A, (0)

(L2a)

(I2b)

jl8.,8'/,)=0 or };F((Jk, (J~, e) de=o

unless (Jk= -l - (J~

M(8m,8~)=0 or };C((Jm, (J~, e) de=o

unless (Jm = - 2- (J~

jl8.,8~)=};~~ /3k/3~f8.+8~+lF((Jk' (J~, e) de

M(8m,8~)=};~~ /3m/3~f8m+8~+2C((Jm, (J~, e) de

Hence the mutual interaction integrals or the
two-state integrals jl8p ,8q

) and M(8s ,8q
) vanish un­

less the two eigenvalues are complementary to

each other. It follows from this that

crack problem under consideration. For the elas­

tic state "A" we substitute the elastic field (9a-f),

which has been obtained by replacing the plastic

zone by the elastic singularities, and the auxiliary

field (Ila-f) for the elastic state "B". We reach
the following expression for jlA,B) and M(A,B) of

Eq. (Sa, b) after some algebra:

and r is a circuit enclosing the plastic zone. Note

that F((Jk, (J~, e) and C((Jm, (J~, e) are functions

which are independent of the "r"-coordinate.

They depend only upon the eigenvalues and" e"
-coordinate. We exploit the path-independence
characteristics of jl8.,8~) and M(8m,8~) to show that

the contributions of all (Jk and (Jm to the two-state

conservation integrals vanish identically except
for (Jk=-l-(J~=(Jn in jl8.,8~) and (Jm=-2

-(J~=(Jn in M(8m,8~). That is, we take f to go to

infinity for (Jk + (J~ < - 1 in J(8.,8~) and for (Jm

+ (J~ < - 2 in M(8m,8~) while we take f to be

arbitrarily small for each of (Jk + (J~ ;;::: - I and

(Jm+ (J;,;;::: -2 (see 1m and Kim, 2000). Hence we

have



Higher Order Eigenfields in Mode II Cracks Under Elastic-Plastic Deformation 259 

and 8n c. For definiteness we take 8 n ( n = 0 ,  -- I, 

--2, A) to be the eigenvalues of the singular 

eigenfield, i.e., 80=- -1 /2 ,  8 - x = - - l ,  ~ - z= - -3 /2 ,  

A and ~n c to be given by -- 1 --8n for J~*'*"~) and 

by - -2 - -8n  for M ~s'*~. Relying upon the path 

independence of the two-state J- integral  of 

equation (5a) and the two-state M-integral of 

Eq. (5b), and substituting the eigenfunction so- 

lution (9a-f) into the expressions (4a, b), we can 

show that the J-integral and the M-integral are 

nothing but the summation of the contribution 

from each complementary pair of eigenvalues and 

can be written as (see Jeon and Im, 2001) 

J = J 0 +  n~_iJ {s's"~) ( 15a) 

- c o  

M = M ( - I ,  - 1 )  + 52, M ~*"':"~ (15b) 
/ 1 = - - 2  

where Jo=J ( -  1/2, - 1/2) is the classical expres- 

sion of the J- integral  for elastic crack problem, 

calculated with the eigenvalue ~0=- -1 /2  alone. 

Furthermore J0 associated with ,8o = I a n d / ~ =  I, 

can be obtained from Eq. (14a); 

Jo=J(-1/2, -1 /2)  (K+ l)/~/1 
8/t 

where Kn is a stress intensity factor for Mode II. 

Therefore ]0 is the same as the well-known ener- 

gy release rate "G" for a Mode II elastic crack 

with the intensity factor /~n. 

We assume that there are no concentrated line 

loads or dislocations at the crack tip. Then there 

appear no logarithmic terms for 6'-a= -- 1, and the 

eigenvalue 8_~ = - I  is related only to a rigid 

body mode. Therefore the first term M ( -  1, - I) 

disappears in the summation (15b). Equations 

(15a, b) imply that the contribution to J and M 

by the eigenfunction of an eigenvalue ~ is gen- 

erated from the mutual interaction between this 

eigenfield and its complementary eigenfield. No 

interactions occur between two eigenfields in 

terms of J and M unless they are complementary 

to each other. For 80 = -  1/2, the K~ field itself 

becomes its complementary field, and we have 

Jo=J ( - l /2 ,  - 1 / 2 ) -  I {-,:2,-,/2~ - - 2  J . In passing, it 

is evident that rigid body modes should be 

excluded from the complementarity consideration 

in the view of the energy release rate. 
- - ~  --o0 

The expressions __~_lJ Cs"'s~) and ~ M ts'~.~) in- 
n n = - - 2  

dicate the summation of the J- integral  and the 

M-integral contributions due to the eigenvalues 

8n and their complementary eigenvalues 8n c. From 

the results of Jeon and Im (2001), we see that the 

term ~ J ~s'~"~), associated with translation of the 
n = - - I  

higher order singularities, means the energetic 

force with respect to the translation of the plastic 

zone while the crack tip being fixed. Furthermore 
--CtJ 

the M-integral  summation ~ M ~'s'~) may be in- 
I I =  - - 2  

terpreted as the energy release rate associated with 

the uniform expansion of the plastic zone. 

4. Numerical Examples and 
Discussion 

The numerical calculation is carried out for a 

material with W = I  m, E = 7 1  GPa, v=0.33 and 

O'r=303 MPa where err is the uniaxial yield st- 

ress. For the model of this study, we select a single 

edge notched tension (SENT) panel (see Fig. 1 

and Fig. 2), and the distributed loading are ap- 

plied on the boundary of the model. Furthermore 

the calculation was processed with a power-law 

hardening material in a uniaxial stress-strain 

law : 

----a (16) 
ev 

Here 8 is the plastic equivalent strain, and ev---- 

a v / E  is a reference strain component;  a is the 

Mises stress, a a nondimensional material con- 

stant, m the power-law hardening exponent. Ty- 

pically m =1 is linear elastic and m = o o  is the 

perfectly plastic. We choose m = 5 ,  10 and c~ as 

the power-law hardening exponents. 

The package code ABAQUS is employed for 

the finite element solution, and the isoparametric 

plane strain elements with eight nodes (CPE8 

element) are used. We select the reduced integra- 

tion element to prevent the excessive incompres- 

sibility constraint due to plastic deformation. 

Figures 4 and 5 show the boundary condition and 

finite element mesh under Mode 11 loading. We 
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10=I (-1/2, -1/2)

and 8~. For definiteness we take 8n (n=0, -I,

- 2, 11) to be the eigenvalues of the singular

eigenfield, i.e., 80=-1/2, 8-1=-1, 8-2=-3/2,
11 and 8~ to be given by - I - 8n for p8n.8~) and

by -2- 8n for M(8n.8~. Relying upon the path

independence of the two-state I -integral of

equation (5a) and the two-state M -integral of

Eq. (5b), and substituting the eigenfunction so­

lution (9a-f) into the expressions (4a, b), we can

show that the J-integral and the M-integral are

nothing but the summation of the contribution

from each complementary pair of eigenvalues and

can be written as (see Jeon and 1m, 2001)

1=10+ ~ p8n.8~) (l5a)
n=-l

M=M(-l, -I) + ~ M(8n.8~) (l5b)
n=-2

where 10=I (-1/2, -1/2) is the classical expres­

sion of the I -integral for elastic crack problem,

calculated with the eigenvalue 80= -1/2 alone.

Furthermore 10 associated with 130= I and fJg = I,
can be obtained from Eq. (14a);

(K+ I) Kif
8f.!

where KII is a stress intensity factor for Mode II.
Therefore 10 is the same as the well-known ener­

gy release rate "G" for a Mode II elastic crack

with the intensity factor KIlo
We assume that there are no concentrated line

loads or dislocations at the crack tip. Then there

appear no logarithmic terms for 8-1= - I, and the

eigenvalue 8-1= - I is related only to a rigid

body mode. Therefore the first term M ( - I, - I)

disappears in the summation (l5b). Equations

(15a, b) imply that the contribution to I and M
by the eigenfunction of an eigenvalue 8n is gen­

erated from the mutual interaction between this

eigenfield and its complementary eigenfield. No

interactions occur between two eigenfields in

terms of J and M unless they are complementary

to each other. For 80= -1/2, the K f field itself
becomes its complementary field, and we have

10=I (-1/2, -1/2) =+P-1/2.-1/2). In passing, it

is evident that rigid body modes should be

excluded from the complementarity consideration

in the view of the energy release rate.

The expressions ~ p8n.8~) and ~ M(8n.8~) in-
n=-I n=-2

dicate the summation of the I -integral and the

M -integral contributions due to the eigenvalues

8n and their complementary eigenvalues 8~. From

the results of Jeon and 1m (2001), we see that the

term ~ p8n.8~), associated with translation of the
n=-l

higher order singularities, means the energetic

force with respect to the translation of the plastic

zone while the crack tip being fixed. Furthermore

the M -integral summation ~ M(8n.8~) may be in-
n=-2

terpreted as the energy release rate associated with

the uniform expansion of the plastic zone.

4. Numerical Examples and
Discussion

The numerical calculation is carried out for a

material with W=I m, E=71 GPa, 11=0.33 and

6y=303 MPa where (Jy is the uniaxial yield st­

ress. For the model of this study. we select a single

edge notched tension (SENT) panel (see Fig. I

and Fig. 2), and the distributed loading are ap­

plied on the boundary of the model. Furthermore

the calculation was processed with a power-law

hardening material in a uniaxial stress-strain

law:

(16)

Here E!' is the plastic equivalent strain. and Cy=

6Y!E is a reference strain component; if is the

Mises stress, a a nondimensional material con­

stant, m the power-law hardening exponent. Ty­

pically m= I is linear elastic and m=OO is the

perfectly plastic. We choose m=5, 10 and 00 as

the power-law hardening exponents.

The package code ABAQUS is employed for

the finite element solution, and the isoparametric
plane strain elements with eight nodes (CPE8

element) are used. We select the reduced integra­

tion element to prevent the excessive incompres­

sibility constraint due to plastic deformation.

Figures 4 and 5 show the boundary condition and

finite element mesh under Mode II loading. We
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crack surface 

"Co 

"C o 

/ 

1 I 
circumfi~rential 
path 35 

v=O circumferential 
2 . . . . . .  t ~ . . r l  . . . . . .  

: ~ . . . .  ~ . . . . . . .  i path 38 
. -,~! .... [, ~TI, . . . . .  r ,  

3 * • 

1;o 
v=0  

Fig. 4 The f in i te  element mesh and b o u n d a r y  con-  

d i t i on  under  M o d e  II 

Fig, 5 The zoomed mesh near the crack tip 

impose  cons tan t  shear  t rac t ion  z'0 a long  each of  

the four edges of  the p lane  s t ra in  block,  and the 

vertical degree of  f reedom is cons t r a ined  at the 

two noda l  poin ts  as s h o w n  in Fig. 4 to remove 

rigid body  mode.  The  hor i zon ta l  rigid d isplacem- 

ent  is r emoved  by fixing a h o r i z o n t a l  d isp laceme-  

nt to be zero on  one  o f  the bo t tom nodes  (with its 

prescr ibed t rac t ion  be ing  replaced by the un- 

k n o w n  reac t ion  force).  Then  the vert ical  react ions  

tu rn  out  to be negl igibly  small  and  the ho r i zon ta l  

equ i l ib r ium assures the skew-symmet r i c  loading.  

The  tota l  n u m b e r  of  e lements  am oun t s  to 4228 tbr  

the smal l  scale yielding,  and  to 4320 for the large 

scale yielding. 

Fo r  the analysis  of  the small  scale y ie lding 
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"Fable  I The maximum radius of the plastic zone for 

Mode II for and r0/dv=O.I and r 0 / o v =  
0.31 

The maximum radius of the plastic zone size 
for the small and the large scale yielding 

to/dr  =0.1 to/dr  =0.31 

.19529585E-01 .44538946 E +00  

T a b l e  2 The calculated stress intensity factor and 
the higher order stress coefficients for Mode 
I1 ( rn=lO,  r0/ov=O.l)  

~ n  

5 2.0 

4 1.5 

3 1.0 

2 0.5 

0 -0.5 

-2  -I .5 

-3  -2.0 

4 2•5 

-5  -3.0 

Stress coefficients (Kn--•47619750E +08)  

Two state J-integral method Two state M-integral method 

-.65243891 E-05 -.65243891 E-05 

• 17035200E-04 .17035200E -04 

* .76000303E-03 

.68115670E-02 .68115670E-02 

.10000000 E - 01 . 10000000 E - 01 

-.25285028E-00 -.25285028E-00 

.O000OO00E +00 .O0000000E +00 

-.35873109E-01 -35873110E+01 

-.30574400E-02 -.30574435E+02 

" not computed with this method 
-Rigid body translation is excluded in this table 

p rob lem we take m = l O  and  Z'0/O'y=O.I. Because 

there are no  ways to find a pr ior i  whe ther  or not  

this load ing  state may  produce  the small  scale 

yie lding for Mode  11, we cons ider  the compu ted  

m a x i m u m  radius  o f  plast ic zone from this  an- 

alysis. In Tab le  1, we see tha t  the m a x i m u m  

radius  of  plast ic zone  under  the load ing  is very 

small  compared  with the d imens ions  of  the spec- 

imen. There fore  we conc lude  that  this  corres-  

ponds  to the small  scale yielding.  The  m a x i m u m  

radius  of  plast ic  zone when  m =  10 and to~dr= 

0.31 is also shown  in Tab le  1. F rom the va lue  of  

the m a x i m u m  radius  of  plast ic zone c o m p a r a b l e  

to the d imens ions  of  the specimen under  this  

loading  ro/dv=0.31, we see tha t  this  is a case of  

large scale yielding,  which  is before the specimen 

reaches a fully plast ic  state. 

Tab le  2 and  3 show the resul t ing  stress coeffi- 

cients for the small  scale yie lding and  the large 

scale yielding,  ut i l iz ing the two-s t a t e  J - i n t e g r a l  
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Fig. 5 The zoomed mesh near the crack tip

v=O
Fig. 4 The finite element mesh and houndary con­

dition under Mode"

.44538946E +00.19529585E-OI

r%y=O.1 r%y=0.31

The maximum radius of the plastic zone size
for the small and the large scale yielding

On
Stress coellicients (Kll =.47619750E+08)

n
Two stale J-integral method Two state M-inlegral melhod

5 2.0 - .65243891 E-05 - .65243891 E-05

4 15 . J7035200E -04 .17035200E -04

3 1.0 * .76000303E -03

2 0.5 .68115670E -02 .68115670E-02

0 -0.5 .IOOOOOOOE-Ol .IOOOOOOOE-O I

-2 -1.5 - .25285028E-00 - .25285028E-00

-3 -2.0 .OOOOOOOOE +00 .OOOOOOOOE +00
-

-4 -2.5 - J5873109E ~Ol -J5873110E+01

-5 -3.0 - J0574400E -02 - J0574435E +02

Table 1 The maximum radius of the plastic zone for
Mode" for and r%y=O.1 and r%y=
0.31

Table 2 The calculated stress intensity factor and
the higher order stress coellicients for Mode
" (m=IO, r%y=O.l)

* : not computed with this method
-Rigid hody translation is excluded in this table

problem we take m= 10 and r%y=O.1. Because

there are no ways to lind a priori whether or not

this loading state may produce the small scale

yielding for Mode II. we consider the computed

maximum radius of plastic zone from this an­

alysis. In Table I, we see that the maximum

radius of plastic zone under the loading is very

small compared with the dimensions of the spec­

imen. Therefore we conclude that this corres­

ponds to the small scale yielding. The maximum

radius of plastic zone when m= 10 and ro/ £1y=

0.31 is also shown in Table I. From the value of

the maximum radius of plastic zone comparable

to the dimensions of the specimen under this

loading ro/£1y=0.3I, we see that this is a case of

large scale yielding, which is before the specimen

reaches a fully plastic state.

Table 2 and 3 show the resulting stress coet1i­

cients for the small scale yielding and the large

scale yielding, utilizing the two-state J -integral

circumferential
path 38

circumferential
path 35

v=O
2

I
.1

impose constant shear traction ro along each of

the four edges of the plane strain block. and the

vertical degree of freedom is constrained at the

two nodal points as shown in Fig. 4 to remove

rigid body mode. The horizontal rigid displacem­

ent is removed by fixing a horizontal displaceme­

nt to be zero on one of the bottom nodes (with its

prescribed traction being replaced by the un­

known reaction force). Then the vertical reactions

turn out to be negligibly small and the horizontal

equilibrium assures the skew-symmetric loading.

The total number of elements amounts to 4228 for

the small scale yielding. and to 4320 for the large

scale yielding.

For the analysis of the small scale yielding
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T a b l e  3 The calculated stress intensity factor and 
the higher order stress coefficients for Mode 

I1 (m=lO,  to~at=0.31) 

Stress coefficients (KH=.47619750E+08) 
n 8n 

Two state J-integml method Two ~ateM-in~gral method 

2.0 .23321117E-02 .23321117E-02 

.23074229E-01 .23074229E-01 

* .92884084E-01 

.16111483E-00 .16111483E-00 

.10000000E-01 .10000000E-01 

-.22151578E-00 -.22151578E-00 

.OO0OOO00E-O0 .00000000E-00 

-.37046697E-01 .37046697E-01 

5 

4 1.5 

3 1.0 

2 0.5 

0 -0.5 

-2  -I.5 

-3  -2.0 

-4  -2.5 

-4  -3.0 . I 1119703E-0t .11119703E-02 

8 " not computed with this method 
-Rigid body translation is excluded in this table 

and the two-sta te  M-integra l  respectively. We see 

from Table  2 and 3 that the results from each of  

two-s ta te  conservat ion integrals are in an excel- 

lent agreement with each other. Fur thermore  we 

find that the stress coefficients related to the 

negative eigenvalues slightly change from small 

scale yielding to large scale yielding, however  the 

coefficients associated with positive eigenvalues 

change rapidly from small scale yielding to large 

scale yielding. This is due to the nature of  the 

normal izat ion of  the radial coordinate.  We now 

assume that there exist no net forces on the con- 

tour surrounding the crack tip nor a dislocat ion 

at the crack tip. In Mode I1, then the eigenvalue 

3_~ = - 1  indicates the solut ion for rigid body 

translat ion along the xz-direct ion and the eigen- 

value 3i----0 indicates the solution for rigid body 

rotation (see Eq. (9a- f ) ) .  Part icularly,  the eigen- 

value 3 - 3 : - - 2  leads to the "'null'" elastic state, 

which yields identically zero displacement and 

zero stress. Hence we do not compute  the coeffi- 

cient of  the eigenvalue 33 = I using the two-state  

J integral in this example, For  an auxil iary field 

for 33 ~- 1, we may use the solution for the center 

of  rotat ion at a crack tip. For  simplicity, however,  

we employ the two-state  M- in t eg ra l  to calculate 

the coefficient of  eigenvalue 33 = 1. 

The numerical  results of  the two-state  f - i n t e -  

T a b l e  4 The two-state f- integrals  associated with 
the higher order singularities for Mode II 
( rn=  lO, r0 /ar=0.  I) 

J=.28755097E +05 

--0.5, - 0 . 5  .56920971E+05 .19795089E+01 

0.5, --1.5 .29410610E+03 .10227964E+01 

1.0, -- 2.0 .00000000E + 00 .0000(OR~E + O0 

1.5, --2.5 .52177085E+00 .18145335E+04 

2.0, --3.0 .27250931E+01 .94769045E+06 

-Rigid body translation is excluded in this table. 
_j(-11z. u2,=2jo 

T a b l e  5 The two-state J-integrals  associated with 
the higher order singularities tbr Mode II 
(m=10,  r0/ar=0.31) 

r=.52779857E+06 

--0.5, --0.5 

0.5, --0.5 

.88328370E +06 

.94571798E +05 

1.0, --  2.0 .00000000E +00 

1.5, --2.5 .I 1325781E+05 

2.0, --3.0 --.54973576E +02 

.16735243E+01 

.17918161E+00 

.00000000E +00 

.21458530E+01 

.10415636E+03 

-Rigid bod translation is excluded in this table. 
_j(-1/2,-1/2) =2./o 

gral using Eq. (13a) tbr various eigenvalues a.  

including the higher order  singularities in each of  

the small scale yielding and the large scale yield- 

ing are tabulated in Table  4 and 5. As seen from 

Table  4, the contr ibut ions o f  the higher order 

singularities to J - i n t e g r a l  are very small. This 

result explains that the effect of  the higher order  

singularities on the f - i n t e g r a l  is negligible when 

the small-scale  yielding zone is localized near the 

crack tip. However  when the plastic zone grows 

larger and larger as the applied loading increases, 

we see that the effect of  the higher order  sin- 

gularities on J integral is not negligible from 

Table  5. In Table  5, it shows that the contr ibut ion 

percentage of  the higher order  singularities to the 

f - i n t e g r a l  is 16.32% when a total of  44 eigen- 

values are taken. The computed two-s ta te  M -  

integrals using the Eq. (12b) are provided in 

Table  6 and 7. F rom Table  6 and 7, we see that 

the values of  two-state  M- in teg ra l  increase rap- 
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Table 3 The calculated stress intensity factor and
the higher order stress coefficients for Mode
II (rn=IO, fOlay=0.31)

On
Stress coefficients (Kll =.47619750E +08)

n
Two state ]-integral method Two state M-integral method

5 2.0 .13321117E-02 .23321117E -02

4 1.5 .13074119E-01 .23074119E-01

3 1.0 * .91884084E -01

2 0.5 .16111483E-00 .16111483E-00

0 -0.5 .IOOOOOOOE-Ol .IOOOOOOOE-Ol

-, -1.5 -21151578E-00 -.22151578E-00

-3 -2.0 .OOOOOOOOE -00 .OOOOOOOOE - 00

-4 -2.5 - .37046697E -0 I .37046697E -0 I

-4 -3.0 .1I119703E-01 11119703E -02

* : not computed with this method
-Rigid body translation is excluded in this table

and the two-state M-integral respectively. We see

from Table 2 and 3 that the results from each of

two-state conservation integrals are in an excel­

lent agreement with each other. Furthermore we

find that the stress coefficients related to the

negative eigenvalues slightly change from small

scale yielding to large scale yielding, however the

coefficients associated with positive eigenvalues

change rapidly from small scale yielding to large

scale yielding. This is due to the nature of the

normalization of the radial coordinate. We now

assume that there exist no net forces on the con­

tour surrounding the crack tip nor a dislocation

at the crack tip. In Mode II, then the eigenvalue

8- 1 = -I indicates the solution for rigid body

translation along the X2-direction and the eigen­

value 81=0 indicates the solution for rigid body

rotation (see Eq. (9a-f)). Particularly, the eigen­

value 8-3 = - 2 leads to the" null" elastic state,

which yields identically zero displacement and

zero stress. Hence we do not compute the coeffi­

cient of the eigenvalue 83 = I using the two-state

] -integral in this example. For an auxiliary field

for 83 = I, we may use the solution for the center

of rotation at a crack tip. For simplicity, however,

we employ the two-state M-integral to calculate

the coefficient of eigenvalue 83 = I.

The numerical results of the two-state] -inte-

Table 4 The two-state J -integrals associated with
the higher order singularities for Mode II

(rn= 10, fol ay=O.I)

On, O~ J(lin,8~)
IP'n·8~)IJ I

J =.28755097E +05

-0.5, -0.5 .56920971 E +05 .19795089E+01

0.5, -1.5 .29410610E+03 .10227964E+01

1.0, -2.0 .OOOOOOOOE + 00 .OOOOOOOOE + 00

1.5, -2.5 .52177085E+00 .18145335E+04

2.0, -3.0 .27250931E+Ol .94769045E +06

-Rigid body translation is excluded in this table.
_p-1/2.-1/2)=2Jo

Table 5 The two-state J - integrals associated with
the higher order singularities for Mode II

(rn=IO, fOlay=0.3I)

On, O~ J(8n.8~)
IP8n·8~)1J I

J =.52779857E +06

-0.5, -0.5 .88328370E +06 .16735243E+01

0.5, -0.5 .94571798E +05 .17918161E+00

1.0, -2.0 .00000000E + 00 .00000000E + 00

1.5. -2.5 .11325781E+05 .21458530E+01

2.0. -3.0 - .54973576E +02 .10415636E+03

- Rigid body translation is excluded in this table.
- p-1/2.-112) =2Jo

gral using Eq. (13a) for various eigenvalues 8n

including the higher order singularities in each of

the small scale yielding and the large scale yield­

ing are tabulated in Table 4 and 5. As seen from

Table 4, the contributions of the higher order

singularities to ] -integral are very small. This

result explains that the effect of the higher order

singularities on the] -integral is negligible when

the small-scale yielding zone is localized near the

crack tip. However when the plastic zone grows

larger and larger as the applied loading increases,

we see that the effect of the higher order sin­

gularities on J-integral is not negligible from

Table 5. In Table 5, it shows that the contribution

percentage of the higher order singularities to the

] -integral is 16.32% when a total of 44 eigen­

values are taken. The computed two-state M­
integrals using the Eq. (12b) are provided in

Table 6 and 7. From Table 6 and 7, we see that

the values of two-state M-integral increase rap-
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Table 6 The two-state M-integrals associated with 
the higher order singularities for Mode II 
( rn=  10, r0/o'v =0.1) 

M =.28348691E +03 

--0.5 --1.5 .28107923E+03 .99150690E +00 

0.0 --2.0 .O0000000E + 03 .O0000000E + 00 

0.5 --2.5 .24446905E +01 .86236449E +02 

1.0 --3.0 --.41329396E+01 .14578943E+03 

1.5 --3.5 .54509789E +02 .19228326E +04 

2.0 --4.0 .45497240E +03 . 16049150E +05 

-Rigid body translation is excluded in this table. 

Table 7 The two-state M-integrals associated with 
the higher order singularities for Mode I1 
( m =  10, r0/ar=0.31) 

M=.I0313821E+06 

--0.5, -- 1.5 .87145079E+05 .84493497E+00 

--0.5, - -  1.5 .O0000000E+O0 .O0000000E+O0 

--0.5, -- 1.5 .21133222E+05 .20490197E+00 

--0.5, --1.5 --.65011872E+03 .63033742E+02 

--0.5, -- 1.5 .32756126E+04 .31759449E+01 

--0.5, --1.5 --.39864010E+02 .36711914E+03 

-Rigid body translation is excluded in this table. 

idly from small scale yielding to large scale 

yielding. This  may be explained in the same way 

as in mode I crack [Jeon and lm, 2001]. That  is, 

the M- in t eg ra l  is the energy release rate asso- 

ciated with the expansion of  the inhomogenei ty  

and so it is related to the size o f  the plastic zone. 

On the other hand, J - J 0  = ~,, j~,,~,5) is the ener- 
n = - - I  

gy release rate associated with translat ion o f  the 

inhomogenei ty,  and so it is related to the overall  

conf igurat ion of  the specimen including the in- 

homogenei ty  of  plastic deformation,  the geometry 

of  the exterior boundary  and the applied loading. 

Figure 6 through 9 show J ,  J *  and Jo, and M,  

M* and M ~ ~/2, 3/2) as well along the circum- 

ferential paths outside the plastic zone for the 

small scale and the large scale yielding. Note  that 

J *  and M*  are the J - in tegra l  and the M integral, 

respectively obtained from the domain  integral 

representation of  Eq. (8a) and (8b) with the 

016  

0.12 - 
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- 0 0 4 -  

. 2 . . o o 8  - 
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Fig. 6 
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N m d : ~  O f c i r c tmd '==~a l  path  

The computed J-integrals along the circum- 

ferential path for Mode 11 (m=10,  ro/O¥= 

0.1) 

050  • 
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0 .40 "  

035 ........... i ~ . . . . . . . . .  J .............. 

030 , q , , ' i , i ' 

34 35 36 37 38 39 4O 

Numbo" o f  c i rcumfer~aial  pa th  

Fig. 7 The computed J integrals along the circum- 

ferential path for Mode II (m=10,  t o / a t =  

0.31) 

04' 

~n.3" 

~o2. zg 
.:/ 

o.I-  

~. ~ - - t ~  ....... ,,:--~- .... ,,, .~ 

<3 M" t Frnto domain integntl 

o- M : Eig~mftmctkmexpasaou 
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Number  o [ circmuferential  pa th  

i 

38 

Fig. 8 The computed M-integrals along the circum- 

ferential path for Mode II (m=10,  r0/av---- 

0.1) 

stress and the displacement gradient computed 

from A B A Q U S .  The domain  integral paths for 

calculat ing J *  and M* are shown in Fig. 4. On 
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o16,-----~---_;_---_;_----___,
Table 6 The two-state M-integrals associated with

the higher order singularities for Mode II
(m=lO, fo/ay=O.I)

0.12

0."

....... ~.... ."
r -..

'8J731 32 }) )4 35 )6

Number ofcircmnfercntial path

*--"~'6

'0

,0.20+-~-;-~-,--~-.--~+-~-.--~-.--~r--~+__......--I
2•

.0.16

..{j.n

Fig. 6 The computed J -integrals along the circum­

ferential path for Mode II (m=IO, fo/aY=

O. I)

1 O.OA

~ 000

11 -0.04

8n, 8~
J(6n08';,) I M(8n,8~)/M I

M=.2834869IE+03

-0.5, -1.5 .28107923E+03 .991 50690E +00

0.0, -2.0 .OOOOOOOOE + 03 .OOOOOOOOE +00

0.5, -2.5 .24446905E+01 .86236449E+02

1.0, -3.0 -AI329396E+OI .14578943E +03

1.5, - 3.5 .54509789E +02 .19228326E+04

2.0, -4.0 A5497240E+03 .16049l50E +05

-Rigid body translation is excluded in this table.

0.80,-----------------;----,

,.16 37 38

Number ofcircumferential path

.;.

i

"

-0- J' From domlUII UIlC\.tB1
-lJ,.- J • Ei!CnfunctiOllcxpl.llSion
V-J,,:J(.II2,.lfl)

030+-~-+-~-+-~--.--~-+__~-;_~___l

"

035

0.75

0.70

0.45 ~ ~V~-' -"-v

DAD

8n, 8~ J(8n.8~)
IM(8n,8~)/M I

M=.10313821 E+06

-0.5, -1.5 .87145079E +05 .84493497E + 00

-0.5, -1.5 .00000OOOE +00 .OOOOOOOOE + 00

-0.5, -1.5 .21133222E+05 .20490197E+00

-0.5, -1.5 -.650Il872E+03 .63033742E +02

-0.5, -1.5 .32756126E+04 .31759449E+OI

-0.5, -1.5 -.39864010E+02 .367Il914E+03

Table 7 The two-state M-integrals associated with
the higher order singularities for Mode II
(m=IO, fo/ay=0.3I)

04

0.5-,--------------------,

3.31

-0 M': Fmm dom.ain integral
-0- M : EigcnrW1ction eJlplWon
_t:J.-~.tl"J,-1'l1

31 32 )] 34 3S 36

Number ofcircwuferential path

\,--1I--1I--1I--

'0

0.1

o0-f-~-,---_,__-_,__--,-~_,_~_,_~_._-__r-_1,.

Fig.8 The computed M-integrals along the circum­

ferential path for Mode II (m= 10, fo/ ay=

0.1)

Fig. 7 The computed J-integrals along the circum­

ferential path for Mode II (m=IO, fo/ay=

0.31)

stress and the displacement gradient computed

from ABAQUS. The domain integral paths for

calculating J* and M* are shown in Fig. 4. On

idly from small scale yielding to large scale

yielding. This may be explained in the same way

as in mode I crack [Jeon and 1m, 2001]. That is,

the M-integral is the energy release rate asso­

ciated with the expansion of the inhomogeneity

and so it is related to the size of the plastic zone.

On the other hand, f - fo= ~ p8",8~) is the ener-
n=-l

-Rigid body translation is excluded in this table.

gy release rate associated with translation of the

inhomogeneity, and so it is related to the overall

configuration of the specimen including the in­

homogeneity of plastic deformation, the geometry

of the exterior boundary and the applied loading.

Figure 6 through 9 show f, f* and fo, and M,
M* and M(-I/Z,-3/Z) as well along the circum-

ferential paths outside the plastic zone for the

small scale and the large scale yielding. Note that

f* and M* are the J-integral and the M-integral,

respectively obtained from the domain integral

representation of Eq. (8a) and (8b) with the
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the other hand, the values of ] and M are cal- 
culated from Eq. (13a, b) through (15a, b). From 
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these figures, we see that ] *  and M* coincide 

with J and M within the accuracy of the FEM 

solution for each of the small scale and the large 

scale yielding. Furthermore these figures appar- 

ently show the path independence of the six 

integrals. The difference between ]0 and ] in 

Fig. 7 is seen from the results of Table 5 for the 

large scale yielding, and the difference between 

M (-1/2'-am and M in Fig. 9 means that there exist 

other meaningful components of M (s'e"~), in addi- 

tion to M (-u2'-am, that comprise the M-integral 
for the large scale yielding. 

The contribution percentage of the higher or- 
der singularities to the ]- integral  in this exam- 

ple, [ ( f - ] o ) / ] ] * l O 0 ,  and the M-integral and 
M (-1/2'-3m as well as the ]- integral  and ]0, 

depending upon the applied loading and the 

power-law hardening exponents, are plotted in 

Fig. 10 through 13. We obtain a rapidly increa- 
sing contribution percentage of the higher order 
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the other hand, the values of f and M are cal­

culated from Eg. (13a, b) through (15a, b). From
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11m

Fig. 13 The f and fo, and M and M(-1/2.-3J2) versus

the hardening exponents under Mode II

these figures, we see that f* and M* coincide

with f and M within the accuracy of the FEM

solution for each of the small scale and the large

scale yielding. Furthermore these figures appar­

ently show the path independence of the six

integrals. The difference between fo and f in

Fig. 7 is seen from the results of Table 5 for the

large scale yielding, and the difference between
M(-IJ2,-3/2) and M in Fig. 9 means that there exist

other meaningful components of M(8n.8~), in addi­

tion to M(-1/2,-3/2), that comprise the M-integral

for the large scale yielding.

The contribution percentage of the higher or­

der singularities to the f -integral in this exam­

ple, [(J - fo) IJJ *100, and the M -integral and
M(-1/2,-3/2) as well as the f -integral and fo,

depending upon the applied loading and the

power-law hardening exponents, are plotted in

Fig. 10 through 13. We obtain a rapidly increa­

sing contribution percentage of the higher order
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singularities to the J-integral toward the positive 

value and the increase of the difference between 

M and M H/2'-3/2) and between J and J0 when the 

applied loading increases and as the power-law 

hardening exponent increases. 

The plastic zone shapes of the Mode II for 

the variations of the applied loading and the 

power-law hardening exponent are shown in Fig. 
14 and 15, respectively. We obtain the variation of  

the plastic zone size and shape as the applied 

loading and the power-law hardening exponent 

change. To show the change of the two-state 

J-integral, the two-state M-integral and the size 

of  the plastic zone depending upon the change of 
the applied loading and the power-law hardening 

exponent, we plot these together with the two- 

state J-integrals and the two-state M-integrals 
associated with the higher order singularities 

Copyright (C) 2003 NuriMedia Co., Ltd. 

(Fig. 16 through 19)• All  of  these figures show 

that J,  J0 and each value of  j~,,,e~) in addition 

to M and M tn"'~g) increase along with the max- 

imum plastic zone size. Furthermore we find that 
jo/2,-3m and M (-l/2'-sm are the most dominant 

values in all J(e"'~) and M (s"M') components re- 

spectively. Furthermore m (*'~g) components ex- 
cept for m (-~/2"-s/2) cancel out one another, and 

then the summation of  the components are almost 
equal to difference between M (-uz'-sm and M in 

Mode II, which is the case for Mode I also (Jeon 

and Im 2001). 
Note that the term J - J o = 5  ] j(s,,~) represents 

the energetic force associated with the translation 
of the plastic zone with the crack tip being fixed 

(see Jeon and Ira, 2001). Therefore this term 
depends upon the size and shape of the plastic 

zone as well as the loading and the specimen 
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singularities to the J-integral toward the positive

value and the increase of the difference between
M and MH/2.-3/2) and between J and Jo when the

applied loading increases and as the power-law

hardening exponent increases.

The plastic zone shapes of the Mode II for

the variations of the applied loading and the

power-law hardening exponent are shown in Fig.
14 and 15, respectively. We obtain the variation of

the plastic zone size and shape as the applied

loading and the power-law hardening exponent

change. To show the change of the two-state

J -integral, the two-state M -integral and the size

of the plastic zone depending upon the change of
the applied loading and the power-law hardening
exponent, we plot these together with the two­
state J -integrals and the two-state M -integrals

associated with the higher order singularities

(Fig. 16 through 19). All of these figures show
that J, Jo and each value of r8n,8~) in addition

to M and M(6n.6~) increase along with the max­

imum plastic zone size. Furthermore we find that
J(I/2,-3/2) and M(-1/2,-3/2) are the most dominant

values in all r8n.8~) and M(6n,6~) components re­

spectively. Furthermore M(6n,6~) components ex­
cept for M(-1/2.-3/2) cancel out one another, and

then the summation of the components are almost
equal to difference between M(-1/2.-3/2l and M in

Mode II, which is the case for Mode I also (Jeon

and 1m 2001).
Note that the term J - Jo=~ r6n.6~) represents

the energetic force associated with the translation
of the plastic zone with the crack tip being fixed

(see Jeon and 1m, 2001). Therefore this term
depends upon the size and shape of the plastic

zone as well as the loading and the specimen
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Table  8 The values of the coefficient A t and C t of 
the displacements prescribed on the boun- 
dary 

8, Coefficients Case I(/=1) 

-0.5 A ~ 191970328E-03 

0.5 C ~ .00000000E ±00 

Case 2(I=2) Case 3 (•=3) 

.91970328E-03 .91970328E-03 

.31090894E-03 -.31090894E-03 

. . . .  i 

u,'= A 'r':' ~f(O) + C'r'' 'h,(O) 
.for zero [(J-J~)/J]* 1 O0 

u, =,4 r .l(O)+Cr h,(O) 
for positive [ (J-J yJ] * l O0 
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Fig. 20 The finite element mesh and displacement 

boundary condition under Mode 1I 

the above displacement boundary  condi t ion be- 

cause the T-s t ress  does not exist in Mode 11. To 

set realistic displacement boundary  condi t ions  we 

first solve for ro/o'~=0.24. The resulting co- 

geometry. Fur thermore  there may be some correla- 

t ion between this term and the configurat ion of  

the plastic zone. To  examine the role of  the 

dominant  eigenfields, we consider  the same spec- 

imen as in Fig. 4 but with different boundary 

condi t ions  in terms of  displacements,  which are 

consistent with the major  eigenstates including 

the eigenfields of  the eigenvalues -- 1/2, 0, 1/2, A. 

Taking only the two major  terms, we assume the 

displacements prescribed on the boundary,  con- 

sistent with the fol lowing two- te rm expansion : 

u~ = A  tr-l/2+lfl (O) 4- CtrU2+thi (O) 

( i = 1 ,  2 and l = 1 ,  2, 3) (17) 

where ' i '  represents the displacement components ,  

and ' [ '  indicate different boundary  conditions.  

Furthermore,  f i (O)  and h i ( 0 )  represent the 0 -  

variat ion of  the eigenfunction in Eq. (9e, f). Note  

that we do not consider  the eigenvalue ~ = 0  in 

efficients for 8n = -  1/2 and 1/2 are used for A z 

and C 2. We choose A I = A 3 = A  2, C1=0, C 3= 
- C  2 (see Table  8). 

The imposi t ion of  the displacements shown in 

Eq. (17) on the boundary will lead to exactly the 

same field inside the domain  before a plastic zone 

is formed around the crack tip. Once the plastic 

zone appears at the tip, the second order non- 

singular terms, reflected from the plastic zone, 

will also appear as well in addi t ion to the higher 

order singular eigenfietds. However ,  the leading 

order nonsingular  terms will still be given by the 

two eigenfields prescribed. Note  that the eigen- 

field of  ~ z = l / 2  controls  f(-3/zm2) while the ei- 

genfield of  ~ _ z = - - 3 / 2  is nothing but a field 

reflected from the formation of  the plastic zone. 

Without  including the eigenfield of  82= 1/2 on 

the exterior boundary,  we are not able to take into 

account the leading order  term of  the energy 
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geometry. Furthermore there may be some correla­

tion between this term and the configuration of

the plastic zone. To examine the role of the

dominant eigenfields, we consider the same spec­

imen as in Fig. 4 but with different boundary

conditions in terms of displacements, which are

consistent with the major eigenstates including

the eigenfields of the eigenvalues - 1/2, 0, 1/2, A.
Taking only the two major terms, we assume the

displacements prescribed on the boundary, con­

sistent with the following two-term expansion:

u!=A 1y-l/Z+1fi(8) +Crl/Z+1hi(8)

(i=I,2 and /=1,2,3)

where 'i' represents the displacement components,

and 'l' indicate different boundary conditions.

Furthermore, Ii (8) and hi (8) represent the 8­
variation of the eigenfunction in Eq. (ge, f). Note

that we do not consider the eigenvalue 81=0 in

Table 8 The values of the coefficient A I and C1 of
the displacements prescribed on the boun­
dary

8. Coefficients Case 11l=1} Case 211=21 Case 3(/=3)
- -
-0.5 Al .91970328E -03 .91970328E -03 .91970328E -03

0.5 C' .OOOOOOOOE -rOO JI090894E -03 - JI090894E -03

11,'= A'r'''''f,(S)+C'r''''h,(fJ)
for zero [(J.J,)IJ]*/00

u,'= A1r" "'f,(fJ)+Cr""'h,(fJ)
for positive [(J-J,JIJ}*/OO

U,'= A'y""';/S)+Cr""h,(fJ)
I for negative [(J·J,)IJ}*/OO

Fig. 20 The finite element mesh and displacement
boundary condition under Mode II

the above displacement boundary condition be­

cause the T-stress does not exist in Mode II. To

set realistic displacement boundary conditions we

first solve for w/l1y=0.24. The resulting co­

efficients for 8n = -1/2 and 1/2 are used for A Z

and C2
. We choose A l =A3=A2

, C=O, C3 =
- C2 (see Table 8).

The imposition of the displacements shown in

Eg. (17) on the boundary will lead to exactly the

same field inside the domain before a plastic zone

is formed around the crack tip. Once the plastic

zone appears at the tip, the second order non­

singular terms, reflected from the plastic zone,

will also appear as well in addition to the higher

order singular eigenfields. However, the leading

order nonsingular terms will still be given by the

two eigenfields prescribed. Note that the eigen­
field of 82 = 1/2 controls p-3/2.112) while the ei­

genfield of 8-2= - 3/2 is nothing but a field

reflected from the formation of the plastic zone.

Without including the eigenfield of 02= [/2 on

the exterior boundary, we are not able to take into

account the leading order term of the energy



266 Insu ,leon, Yongwoo Lee and Seyoung Im 

O.08 

,, ¢aqe 2: I(J-le)/J]o 100= 4 ~1 p/o 
0.04 - - - -  one 3: I(J-Jo)/J] *10t)- 4 B04% 

O02 
" 2: ,f' =~t I 727.'q~ ~r06 

% "~, ¢ l s c  3: J ~t17461E¢O6 
~> 0 . 0 0  ~ 

-o041 ~ " -  

-0.06 

- 0 . 0 8  . , . , , ~ . , . 

-0.1 O0 0,1 02 03 04 05 0,6 
~'W 

Fig. 21 The change of the plastic zone shape de- 
pending upon the sign of [(]--]o)/]]*100 
under Mode I1 (m =10) 

release rate associated with the translation of the 

plastic zone itself; we have only ]=]o up to the 

leading order in this case. Therefore the first case 

1= 1 produces almost zero value of of [ ( ] - - ] 0 ) /  

]]*100, and it is found that the second case ( / =  

2) and the third case (•=3) yields a positive and 

negative value, respectively. 

From Fig. 21 we see the apparent change of the 

plastic zone shape between the case of / = 2  and 

the case of [ = 3  compared with the plastic zone 

of the case of l = 1. All of these three cases have 

almost the same J0 value, which means approxi- 

mately the same energy release rate for translation 

of the crack tip singularity in the absence of 

plastic zone under Mode I1. The negative value of 

[ ( J - ]o ) / J ]  * I00 contracts the yield zone in the 

xl-direction and slightly translate the yield zone 

in the negative x~-direction, while the positive 

value of E(J-Jo)/J]*lO0 expands it in the xl-  

axis and tends to translate the yield zone slightly 

in the positive xz-direction, compared with the 

plastic zone lbr the case of l = 1 .  Thus the sign 

of [(]-]o)/J]*lO0 for Mode 11, which is domi- 

nantly affected by the eigenfunction term of 82= 

1/2, is related to the shape of the plastic zone. The 

similar correlation between the plastic zone shape 

and [(]--]o)/]]*100 was discussed lbr mode I 

by Jeon and Im (2001). 

From the structure of ](~"'~'), it follows that 

there would be no energetic force or configura- 

tional force associated with translation of the 

plastic zone, i.e., zero ( ] - - ]0 ) ,  if any of the higher 

order nonsingular eigenfields, including the term 

82----1/2, is not present on the boundary condition 

(16). For ]~1/2,-3/2) will be zero in the absence of 

the term of 8z=1/2 regardless of the magnitude 

of the intensity of the higher order singularity 

8 -2=- -3 /2 ,  which is generated along with the 

appearance of the plastic zone even if all the 

higher order nonsingular terms are absent from 

the far-field boundary. This clearly shows the 

limitation of some works in relation to the role 

of T-stress field (for examples, Betagon and 

Hancock, 1991 ; Bibly et al, 1986). The first order 

additional energetic force ] - - ] 0  was neglected in 

these works because only the K-field and T -  

stress were considered on the external boundary 

of their models. 

6. Conclusions 

We have investigated the higher order sing- 

ularities including their energetics in elastic- 

plastic cracks under Mode ll systematically. With 

the aid of the eigenfunction solutions and the 

two-state conservation integrals as well, we have 

calculated the numerical results for the intensities 

of the higher order eigenvalues in the elastic- 

plastic crack under Mode II deformation. We may 

draw the following conblusions. 

(l) The explicit formulations of the ] - in t e -  

gral, the M-integral and the two-state conservat- 

ion integrals for elastic-plastic crack problem 

under Mode II deformation are derived by using 

the complete Williams eigenfunction expansion 

including both positive and negative eigenvalue 

8n, in an annular region outside the plastic zone 

around the crack tip. The present results show 

that the Laurant series type expansion for mode II 

cracks rapidly converges in terms of the ] -  and 

M-integral even for the large scale yielding. 

(2) The most dominant value of the two-state 

]- integrals  under Mode II is computed by the 

eigenvalue 8_1=--3/2 ,  and the associated two- 
state integrals ]t~/z.-at2) and M (-a/2"-3~2) constitute 

the major substantial portions of n ~ l ]  t e ' ~ ' ~ ) =  and 

M ~"'~), i.e., the main contributions of the 
n = - - 2  

Copyright (C) 2003 NuriMedia Co., Ltd. 
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Fig. 21 The change of the plastic zone shape de­
pending upon the sign of [(J-Jo)/jJ"IOO
under Mode II (m=IO)

release rate associated with the translation of the

plastic zone itself; we have only J = Jo up to the

leading order in this case. Therefore the first case

I = I produces almost zero value of of [ (j - Jo) /

JJ "100, and it is found that the second case (l =

2) and the third case (l =3) yields a positive and

negative value, respectively.

From Fig. 21 we see the apparent change of the

plastic zone shape between the case of 1=2 and

the case of 1=3 compared with the plastic zone

of the case of I = I. All of these three cases have

almost the same Jo value, which means approxi­

mately the same energy release rate for translation

of the crack tip singularity in the absence of

plastic zone under Mode II. The negative value of

[ (J - Jo) / JJ •100 contracts the yield zone in the
xl-direction and slightly translate the yield zone

in the negative xl-direction, while the positive

value of [(J - Jo) /JJ ·100 expands it in the Xl­

axis and tends to translate the yield zone slightly

in the positive Xl-direction, compared with the

plastic zone for the case of I = I. Thus the sign
of [(J -Jo) / JJ ·100 for Mode 11, which is domi­

nantly affected by the eigenfunction term of 02=

1/2, is related to the shape of the plastic zone. The

similar correlation between the plastic zone shape

and [(J - Jo) IJJ •100 was discussed for mode I
by Jeon and 1m (2001).

From the structure of p8n.8~), it follows that

there would be no energetic force or configura­

tional force associated with translation of the
plastic zone. i.e., zero (J - Jo), if any of the higher

6. Conclusions

order nonsingular eigenfields, including the term

02= 1/2, is not present on the boundary condition
(16). For pll2.-3/2) will be zero in the absence of

the term of 02= 1/2 regardless of the magnitude

of the intensity of the higher order singularity

0-2= - 3/2, which is generated along with the

appearance of the plastic zone even if all the

higher order nonsingular terms are absent from

the far-field boundary. This clearly shows the

limitation of some works in relation to the role

of T -stress field (for examples, Betagon and

Hancock, 1991; Bibly et ai, 1986). The first order

additional energetic force J - Jo was neglected in

these works because on Iy the K -field and T­
stress were considered on the external boundary

of their models.

We have investigated the higher order sing­

ularities including their energetics in elastic­

plastic cracks under Mode 11 systematically. With

the aid of the eigenfunction solutions and the

two-state conservation integrals as well, we have

calculated the numerical results for the intensities

of the higher order eigenvalues in the elastic­

plastic crack under Mode II deformation. We may

draw the following conClusions.

(I) The explicit formulations of the J -inte­

gral, the M -integral and the two-state conservat­

ion integrals for elastic-plastic crack problem

under Mode II deformation are derived by using

the complete Williams eigenfunction expansion

including both positive and negative eigenvalue

On. in an annular region outside the plastic zone

around the crack tip. The present results show
that the Laurant series type expansion for mode II

cracks rapidly converges in terms of the J- and

M-integral even for the large scale yielding.

(2) The most dominant value of the two-state

J -integrals under Mode II is computed by the

eigenvalue 0-1 = - 3/2, and the associated two­
state integrals pll2.-3/2) and M(-lI2,-3/2) constitute

the major substantial portions of ~ p8n.8~) and
n=-l

~ M(8n.8~)· th . 'b .
n~2 ,I.e., e mam contn utlOns of the
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higher order singularities to the ] - in tegra l  and 

M-integral ,  respectively, under Mode II. 

(3) A positive value of [ ( ] - - ]o) / ]]  * t00 tends 

to expand the plastic zone in the direction of the 

crack tip ligament while a negative value of this 

parameter to contract the plastic zone in the dir- 

ection opposite to the crack tip ligament. 

(4) A first order contribution to ] - - ] 0  fails to 

appear if the higher order term of ~2 = 1/2 is not 

present on the boundary condition. 
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higher order singularities to the I -integral and

M -integral, respectively, under Mode II.
(3) A positive value of [(J - 10) / JJ '\00 tends

to expand the plastic zone in the direction of thc

crack tip ligament while a negative value of this

parameter to contract the plastic zone in the dir­

ection opposite to the crack tip ligament.

(4) A first order contribution to J - Jo fails to

appear if the higher order term of 02= 1/2 is not

present on the boundary condition.
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